Reading and writing data

A short description of the post.

  1. Load the R packages we will use
  1. Download \(CO_2\) emissions per capita from Our World in Data into the directory for this post.

  2. Assign the location of the file to file_csv The data should be in the same directory as this file

Read the data into R and assign it to emissions

file_csv <- here("_posts", "2022-02-21-reading-and-writing-data","co-emissions-per-capita.csv")

emissions  <- read_csv(file_csv)
  1. Show the first 10 rows (observations of) emissions
emissions
# A tibble: 23,307 x 4
   Entity      Code   Year `Annual CO2 emissions (per capita)`
   <chr>       <chr> <dbl>                               <dbl>
 1 Afghanistan AFG    1949                              0.0019
 2 Afghanistan AFG    1950                              0.0109
 3 Afghanistan AFG    1951                              0.0117
 4 Afghanistan AFG    1952                              0.0115
 5 Afghanistan AFG    1953                              0.0132
 6 Afghanistan AFG    1954                              0.013 
 7 Afghanistan AFG    1955                              0.0186
 8 Afghanistan AFG    1956                              0.0218
 9 Afghanistan AFG    1957                              0.0343
10 Afghanistan AFG    1958                              0.038 
# ... with 23,297 more rows
  1. Start with emissions data THEN

use clean_names from the janitor package to make the names easier to work with assign the output to tidy_emission show the first 10 rows of tidy_emission

tidy_emissions <- emissions %>% 
  clean_names()

tidy_emissions
# A tibble: 23,307 x 4
   entity      code   year annual_co2_emissions_per_capita
   <chr>       <chr> <dbl>                           <dbl>
 1 Afghanistan AFG    1949                          0.0019
 2 Afghanistan AFG    1950                          0.0109
 3 Afghanistan AFG    1951                          0.0117
 4 Afghanistan AFG    1952                          0.0115
 5 Afghanistan AFG    1953                          0.0132
 6 Afghanistan AFG    1954                          0.013 
 7 Afghanistan AFG    1955                          0.0186
 8 Afghanistan AFG    1956                          0.0218
 9 Afghanistan AFG    1957                          0.0343
10 Afghanistan AFG    1958                          0.038 
# ... with 23,297 more rows
  1. Start with the tidy_emissions THEN use filter to extract rows with year ==1999 THEN use skim to calculate the descriptive statistics
tidy_emissions %>% 
  filter(year ==1999) %>% 
  skim()
Table 1: Data summary
Name Piped data
Number of rows 228
Number of columns 4
_______________________
Column type frequency:
character 2
numeric 2
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
entity 0 1.00 4 32 0 228 0
code 12 0.95 3 8 0 216 0

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
year 0 1 1999.00 0.00 1999.00 1999.00 1999.00 1999.0 1999.00 ▁▁▇▁▁
annual_co2_emissions_per_capita 0 1 4.75 6.01 0.03 0.71 2.83 7.5 53.91 ▇▁▁▁▁
  1. 13 observations have a missing code. how are these observations different? start with tidy_emissions then extract rows with year == 1999 and are missing a code
tidy_emissions %>% 
  filter(year == 1999, is.na(code))
# A tibble: 12 x 4
   entity                     code   year annual_co2_emissions_per_ca~
   <chr>                      <chr> <dbl>                        <dbl>
 1 Africa                     <NA>   1999                         1.05
 2 Asia                       <NA>   1999                         2.35
 3 Asia (excl. China & India) <NA>   1999                         3.19
 4 EU-27                      <NA>   1999                         8.42
 5 EU-28                      <NA>   1999                         8.56
 6 Europe                     <NA>   1999                         8.46
 7 Europe (excl. EU-27)       <NA>   1999                         8.48
 8 Europe (excl. EU-28)       <NA>   1999                         8.22
 9 North America              <NA>   1999                        14.4 
10 North America (excl. USA)  <NA>   1999                         5.35
11 Oceania                    <NA>   1999                        12.6 
12 South America              <NA>   1999                         2.45

Entities that are not countries do not have country codes.

  1. Start with tidy_emissions THEN

    use filter to extract rows with year == 1999 and without missing codes THEN use select to drop the year variable THEN use rename to change the variable entity to country assign the output to emissions_1999

emissions_1999 <- tidy_emissions %>% 
  filter(year ==1999, !is.na(code)) %>% 
  select(-year) %>% 
  rename(country = entity)
  1. Which 15 countries have the highest annual_co2_emissions_per_capita assign the output to max_15_emitters
max_15_emitters <- emissions_1999 %>% 
  slice_max(annual_co2_emissions_per_capita, n = 15)
  1. Which 15 countries have the lowest annual_co2_emissions_per_capita?

start with emissions_1999 THEN use slice_min to extract the 15 rows with the lowest values assign the output to min_15_emitters

min_15_emitters <- emissions_1999 %>% 
  slice_min(annual_co2_emissions_per_capita, n = 15)
  1. Use bind_rows to bind together the max_15_emitters and min_15_emitters assign the output to max_min_15
max_min_15 <- bind_rows(max_15_emitters, min_15_emitters)
  1. Export max_min_15 to 3 file formats
max_min_15 %>% write_csv("max_min_15.csv") # comma-separated values
max_min_15 %>% write_tsv("max_min_15.tsv") # tab separated
max_min_15 %>%  write_delim("max_min_15.psv", delim = "|") # pipe-separated
  1. Read the 3 file formats into R
max_min_15_csv <- read_csv("max_min_15.csv") # comma-separated values
max_min_15_tsv <- read_tsv("max_min_15.tsv") # tab separated
max_min_15_psv <- read_delim("max_min_15.psv", delim = "|") # pipe-separated
  1. Use setdiff to check for any differences among max_min_15_csv, max_min_15_tsv and max_min_15_psv
setdiff(max_min_15_csv, max_min_15_tsv, max_min_15_psv)
# A tibble: 0 x 3
# ... with 3 variables: country <chr>, code <chr>,
#   annual_co2_emissions_per_capita <dbl>

Are there any differences?
no

  1. Reorder country in max_min_15 for plotting and assigning to max_min_15_plot_data

start with emission_1999 THEN use mutate to reader country according to annual_co2_emissions_per_capita

max_min_15_plot_data <- max_min_15 %>% 
  mutate(country = reorder(country, annual_co2_emissions_per_capita))
  1. Plot max_min_15_plot_data
ggplot(data = max_min_15_plot_data,                                 mapping = aes(x= annual_co2_emissions_per_capita, y = country)) 
geom_col: width = NULL, na.rm = FALSE
stat_identity: na.rm = FALSE
position_stack 
labs(title = "The top 15 and bottom 15 per capita CO2 emissions", subtitle = "for 1999", x = NULL, y = NULL)
$x
NULL

$y
NULL

$title
[1] "The top 15 and bottom 15 per capita CO2 emissions"

$subtitle
[1] "for 1999"

attr(,"class")
[1] "labels"
  1. Save the plot directory with this post
ggsave(filename = "preview.png", path = here("_posts","2022-02-21-reading-and-writing-data"))
  1. Add preview png to yaml chuck at the top of this file

preview: preview.png